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Abstract  

A general method for describing multimodal atomic 
densities is presented. It is based on series expansions 
of a harmonic Gaussian probability density function. 
The most suitable expansion is of the Gram-Char l i e r  
type; its Fourier transform can be easily inserted in a 
structure factor equation. This statistical method yields 
a satisfactory fit to the data  and allows for a better 
interpretation of the fit parameters than sophisticated 
split-atom models. The method is especially useful for 
weakly resolved modes and allows a better distinction 
between disorder and anharmonic motion than in 
conventional Fourier syntheses. Calculations on 
CsPbC13, ice Ih and RbAg4I 5 are presented to show the 
strengths and the limitations of this method. 

I. Introduct ion 

Disordered solids with low transition barriers can be 
described crystallographically in two fundamentally 
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different ways:  (a) using split-atom models ('split 
models') with partial occupancies or (b) using anhar- 
monic probability density functions (p.d.f.'s) with full 
occupancies and more than one local maximum of 
density ('multimodality'). Only the latter method yields 
directly physically meaningful model parameters owing 
to the lack of intersite correlations. It allows a 
straightforward evaluation of the p.d.f, in the overlap 
region of the split atoms. The evaluation of the true 
p.d.f, around the transition barrier is of great impor- 
tance, e.g. in structures of ionic conductors or in 
hydrogen-bonding situations, and it is in the end 
indispensable for distinguishing true disorder from 
pronounced thermal motion. 

A generalized model p.d.f, is clearly needed for 
modelling such a possibly multimodal atomic p.d.f. 
This general p.d.f, must fulfil the following conditions: 
(a) parametrizability and Fourier transformability to 
allow inclusion in a least-squares refinement procedure; 
(b) compatibility with symmetry requirements to allow 
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an introduction of constraints to the actual point 
symmetry; and (c) ability to be extended to include 
higher-order terms to allow a sufficient accuracy of 
description. 

Johnson (Johnson, 1969, 1970, 1980; Johnson & 
Levy, 1974) has brought two series expansions to the 
attention of crystallographers, the Edgeworth and the 
Gram-Charlier expansions, both of which fulfil these 
criteria. A summary of their general properties will be 
given as a basis for the discussion of their limitations in 
the case of multimodality. To test their performance in 
this case a number of neutron data sets were analysed 
using a program system (Zucker, Perenthaler, Kuhs, 
Bachmann & Schulz, 1982) which allows the refine- 
ment of the appropriate temperature-factor expressions 
(i.e. the Fourier transforms of the general p.d.f.'s as 
well as the calculation of the resulting p.d.f.). The 
examples are chosen to demonstrate on the one hand 
the ability to distinguish thermal motion from weakly 
resolved disorder and, on the other hand, the ability to 
describe systems with rather pronounced disorder. 

2. Models for multlmodality 

Both static and dynamic effects contribute to the 
temperature l:actor affecting Bragg intensities measur- 
able in a diffraction experiment. A general statistical 
approach is able to describe static disorder (space 
average) in the same way as dynamical disorder (time 
average). These effects are not distinguishable in an 
elastic diffraction experiment. On the other hand, 
weakly resolved disorder (whether static or dynamic in 
origin) may be distinguished from pronounced anhar- 
monic motion. A conclusive decision in favour of 
unimodality is limited by the resolution obtainable from 
a finite data set as well as limited by the fundamental 
temperature dependency of precision obtainable in a 
reconstruction of the true p.d.f. Such a decision has 
therefore to be taken with great care. Nevertheless, 
under the assumption of smoothly varying true p.d.f.'s 
a careful inspection of the model p.d.f, allows not only 
a decision to be made in favour of multimodality 
(= disorder), it allows in certain cases (see § 5b) also a 
decision in favour of unimodality even with a finite 
resolution imposed by a limited data set. 

A statistical approach to the analysis of thermal 
motions suitable for multimodal distributions was 
developed by Johnson (Johnson, 1969, 1970, 1980; 
Johnson & Levy, 1974). The point of departure is the 
differential expansion of a trivariate harmonic (Gaus- 
sian) p.d.f.: 

[ 1 
p.d.f.(U),nr I = P.d.f.(U)har 1 -- C J D 1 + 2--( Cjk DjDk 

1 1 3[ C J k l D j D k D 1  + " "  ' (1) 

where Dj = d/du J, u is the displacement vector, and 
C J'' ' are tensorial coefficients. The differential operator 
Dj may be expressed in terms of (Chebyshev) Hermite 
polynomials by the identity 

( - D )  r p.d.f.(U)har = Hs(u ) p.d.f.(U)har (2) 

to allow a numerical evaluation of the generalized p.d.f. 
The three-dimensional Hermite polynomials are tabu- 
lated in the literature (Johnson & Levy, 1974; Zucker & 
SchuIz, 1982) up to the sixth order. Hence the 
evaluation of a generalized p.d.f, is straightforward, 
resulting in the so-called Gram-Charlier expansion. 
The explicit formula for the three-dimensional case was 
given by Mih~il~ (1968). To minimize correlation 
problems in a least-squares refinement, the anharmonic 
first- and second-order terms are omitted, yielding the 
standardized form of the Gram-Charlier expansion (up 
to sixth order) 

[1 1 P'd'f'(u)°c = P'd'f'(U)har + 3--~'. Cjkl H(u)lkt 

1 
+ 4~ CJ*tm H(u)j, tm 

1 
"1- ~ C Jklmn H(U)jklmn 

5~ 

1 ] 
+ 6! cJklmnPH(U)Jklmnp ' (3) 

where the coefficients C j*l''" are known as quasi- 
moments (Kuznetsov, Stratonovich & Tikhonov, 
1960). 

The terms occur in a sequence determined by the 
successive derivatives of the harmonic p.d.f. This is not 
necessarily in decreasing order of importance and a 
different ordering is sometimes used. Edgeworth (1905) 
collected terms of equal order in the Hermite poly- 
nomials and arranged them in ascending order, which 
gives the Edgeworth expansion. The explicit formula 
for the three-dimensional case was given by Chambers 
(1967). In standardized form up to fourth-order terms 
it reduces to 

P'd'f'(U)Ew = P'd'f'(u)har / 1 + ±3t g j k l  n(u)Jkt 

i -  

10 KJkl K mnp 1 KJktmH(u)jkt m + 
+ 4"--~. 6! 

X H(u)jklmnp] , (4) 

where the coefficients K .m''" are referred to as 
cumulants. 

Both the quasi-moments in (3) and the cumulants in 
(4) are expressible in terms of moments and are inter- 
convertible. In the given standardized expressions the 
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lower-order terms do not differ, while the sixth- and 
higher-order terms do 

C jkt ~ K Jt,t 

10 
C ./kt'nnp ~ K .lkt~"p + ~ K Jkt K mnp. (5) 

6! 

In this way each cumulant K Jkt''' contributes to all 
higher-order quasi-moment terms (and vice versa),  
whereby in the Edgeworth approximation up to fourth 
order all combinations higher than the quadratic third 
cumulant term are assumed to be negligible. Hence the 
given Edgeworth approximation (4) is to a certain 
extent arbitrarily truncated (omission of further cross- 
terms) and should be considered with some care (see 
also Zucker & Schulz, 1982). 

The Fourier transforms of the two expansions (given 
in § 4) are different, the Gram-Charlier transform 
being like a Taylor series and exact, the Edgeworth 
transform being an exponential series and exact only 
under the above-mentioned assumptions concerning the 
relative importance of the terms. The resulting superi- 
ority of the Gram-Charlier type with respect to the 
Fourier transformation is obvious. Its superiority in 
fitting multimodal density distributions remains to be 
proved. 

Whenever anharmonic terms are involved in p.d.f. 
calculations a distinction between different terms 
concerning atomic positions has to be made. The 
'mean' is simply the first-order term in the series 
expansion (i.e. the refined atom position). The 'mode' is 
given by a local maximum in the p.d.f. (see also 
Johnson, 1970). Whenever fourth- or higher-order 
terms are involved, two or even more modes can exist 
for one atomic position. A 'saddlepoint' is defined as 
the point of minimal p.d.f, between two modes. 

Multimodal p.d.f.'s can be described by series 
expansions of the Gram-Charlier or Edgeworth type. 
These real-space models have the same advantages as 
the real-space electron density expansions over con- 
ventional difference (Fourier) density maps (see, for 
example, Hirshfeld, 1971, 1977). However, the usually 
applied double Fourier inversion of the electron density 
calculations is unnecessary in calculations of a p.d.f.; 
the p.d.f, may be calculated directly from the param- 
eters, hence reducing random noise, termination-of- 
series effects and phase errors considerably. The 
least-squares estimated oarameters provide quantita- 
tive estimates of all variances and covariances; the 
estimated standard deviation of the p.d.f, may be 
calculated from the eovariance matrix. The only 
disadvantage of such a solely 'parameter-based' real- 
space description is the uncertainty about the genuine- 
ness of the underlying model. 

3. Limitations of the models 

Conditions for positive-definiteness and multimodality 
have been obtained for the one-dimensional ease by 
Barton & Dennis (1952) [slightly revised by Draper & 
Tierney (1972)] and for the two-dimensional case by 
Sarmanov & Bratoeva (1967). More specifically the 
results of Barton & Dennis show a less restrictive 
behaviour of the truncated Gram-Charlier-type expan- 
sion with respect to the positive-definite combinations 
of coefficients compared to the truncated Edgeworth 
type. The matter of interest in this context is the region 
of multimodality. This region lies well inside the 
positive-definite region in the one-dimensional case. 

For the three-dimensional case we have used a 
numerical method to survey the performance of these 
series expansions with respect to multimodality for 
some typical examples. The first important result is that 
multimodal p.d.f.'s which are positive everywhere exist 
neither for the Gram-Charlier nor for the Edgeworth 
expansion. However, instead of the strict mathematical 
borderline another limit can be chosen assuming that 
flat negative regions at the tails of a distribution do not 
seriously affect the physical meaning of the entire p.d.f. 
Instead of the limiting surfaces in the multidimensional 
parameter space of the tensorial coefficients, two 
derived quantities are used to show the results: (a) the 
'normalized mean-mode separation', i.e. the distance 
between the mean and the mode position normalized by 
the square-root of the harmonic second-order term, and 
(b) the p.d.f, ratio of the mode and the mean 
('mode/mean ratio'). The results are given in Fig. 1 for 
symmetrical twofold, threefold and fourfold splittings. 
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Fig. 1. Normalized mean-mode separation v e r s u s  mode/mean ratio 
calculated for symmetrical twofold, threefold and fourfold 
splittings for the Gram-Charlier and Edgeworth expansion. 
P.d.f.'s with negative regions up to 10% of the probability at the 
mode position are admitted. 
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The behaviour of the two expansions in this 
two-parameter space is well defined. A striking feature 
is the strong dependence of the mean-mode separation 
on the normalization factor in the case of high 
mode/mean ratios. On the other hand, the mean-mode 
separation becomes strongly dependent on the anhar- 
monic modification terms in the case of low mode/ 
mean ratios. At a mean-mode separation of ~1 a 
transition from an 'anharmonic-dominated' p.d.f, to a 
'harmonic-dominated' p.d.f, occurs. In the anharmonic- 
dominated region the model is quite flexible. The 
restrictions in this region concern mainly the mode/ 
mean ratio (only small ratios obtainable), but due to the 
almost smoothly shaped atomic p.d.f, this is not a 
serious limitation. On the other hand, both parameters, 
the mode/mean ratio and the mean-mode separation, 
are equally important in the harmonic-dominated 
region; therefore, the model is less flexible in this region. 

In the case of three- and fourfold splittings the 
limiting line for a maximal 'mode/saddle ratio' (i.e. the 
p.d.f, ratio of the mode and the saddle point) is given. 
Depending on this ratio the whole range between these 
limiting lines and the ~-fold case is obtainable (a 
mode/saddle ratio of 1 means oo-fold splitting, i.e. a 
circular or spherical distribution of mode positions). 

Even-fold splitting can be achieved by adding 
appropriate even-order modification terms to the 
harmonic p.d.f., while odd-fold (i.e. threefold) splitting 
is achieved by adding a combination of odd- and 
even-order terms. Odd-order terms solely are not 
sufficient, because they always give strongly negative 
p.d.f.'s. Both truncated expansions [equations (3) and 
(4)] behave identically for even-order splittings, pro- 
vided that third-order terms are omitted. Whenever 
third-order terms are involved, the Edgeworth type 
behaves differently owing to the quadratic third 
cumulant term; as in the one-dimensional case, the 
Gram-Charlier type allows for a better resolved mode 
separation compared to the Edgeworth type. 

Globally these test calculations suggest that at least 
the mode resolving power of both expansions is 
sufficient to attack delicate problems of atomic split- 
tings in crystal structures, while the flexibility of these 
models in the case of highly separated modes is limited. 

4. Refinement strategy 

Owing to their generality these statistical models of 
multimodal density distributions may in some cases be 
less satisfactory compared to more specific models; for 
example, multimodal density distributions of rotating 
molecules can be described more successfully by means 
of symmetry-adapted surface harmonics (Press & 
Hiiller, 1973, 1978; Press, 1973; H/iller & Press, 1979; 
Press, Grimm & H/Jller, 1979). Even simple split 
models may be more powerful in fitting structural data; 

however, the physical interpretation of these split 
models is aggravated, because it has to be made via a 
conventional Fourier synthesis with its limited resolving 
power (see § 5b) or via sophisticated split-atom p.d.f. 
superpositions. As pointed out by Hutton & Nelmes 
(1981), a direct interpretation of these split models in 
terms of conventional disorder is misleading in some 
cases. Moreover, the parameter set itself is usually 
strongly affected by high interatomie correlations 
(sometimes preventing convergence in the least-squares 
refinement) in contrast to the multimodal description, 
which still remains a one-particle model. 

The adequacy of the statistical approach to multi- 
modality has been tested by performing least-squares 
refinements on actual data. The Fourier transforms of 
equations (3) and (4) respectively were inserted in a 
standard least-squares routine (Zucker, Perenthaler, 
Kuhs, Bachmann & Sehulz, 1982) yielding the follow- 
ing structure factor expressions: 

F(h)G c = Y f jexp(21tix]  h q -  b~ r hqhr) 
J 

x [ 1 - ~zt 3 iC] rs hq h~ h s 

+] l t  4 C7 TM hqhrhsh t 

+ l~7t 5 iC] rstu hq h r h s h t h u 

- ~ z t '  C]rStUV hgh, .hshthuhv] (6) 

F(h)Ew = Y fj  exp[i(2nx] h q -  K]  "s huhrhs) 
J 

- ( b ] r h q h r - K ] r S t h q h r h s h ) ] ,  (7) 

where fj is the atomic form factor (or neutron 
scattering length) of atom j, xj are the positional 
parameters, bj the harmonic parts of the temperature 
factor and Cj and Kj the anharmonic quasi-moments 
and cumulants, respectively. 

A general problem of these refinements is the number 
of refinable parameters. Even if in special cases 
refinements with ratios of reflections per parameter as 
small as two or three are feasible, a ratio of five seems 
to be desirable assuming the high-precision diffraction 
data available nowadays. In the general triclinic case 
there are 83 free parameters/atom up to sixth order. 
Owing to the normally low dimensionality of disorder, 
very often a limited number of these are really important. 
Therefore, the problem may be reduced dramatically 
by systematically setting non-significant parameters to 
zero or by using the contracted tensor model as 
proposed by Johnson (1980). The first method is 
relatively time-consuming, the fastest procedure being a 
destructive one, i.e. to refine all parameters of an atom 
at the beginning and then setting all non-significant 
parameters back to zero. If the initial refinement is not 
successful a constructive method may be chosen 
instead, moving from a lower-order expansion to 
consecutively higher-order ones and reducing in each 
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order the number of parameters as described above.* 
Both procedures are uncritical (i.e. not affecting the 
final result) in the case of low correlations between 
terms of equal order (normally 0 .10-0 .20 ,  exception- 
ally 0 .50-0.60) .  In the case of very high correlations 
between terms of equal order (>0.90)  constraints 
among these parameters may be introduced. When- 
ever large but insignificant terms occur, the order of 
expansion should be reduced (or better the data set 
should be improved). 

The strong interactions among even-order terms and 
among odd-order terms are sometimes overestimated. 
As long as the refinement is converging even very high 
correlations are not a serious problem, because the 
entire parameter set is interpreted via the p.d.f, rather 
than individual terms. However, in addition to the 
conventional tests of the refinement results a visual 
check of the correctness of the p.d.f, is indispensable; 
deep negative regions are hardly acceptable. It should 
be noted that in all cases the harmonic terms lose their 
direct physical meaning; a meaningful interpretation is 
obtainable only by inspection of the complete p.d.f. 

5. Test refinements 

Neutron data sets on CsPbC13 (Nelmes, 1981), ice Ih 
(Kuhs & Lehmann, 1981) and RbAg4I 5 (Kuhs, Lehner 
& Heger, 1983) were used for the test refinements. 
They illustrate the strengths and the limits of multi- 
modal p.d.f.'s for modelling atomic disorder. In 
CsPbC13 any disorder present is expected to be slight, 
ice Ih contains highly disordered H atoms with 
questionable additional weak splittings and the Ag 
atoms in the ionic conductor RbAg4I 5 behave in an 
extremely anharmonic way. Different independent 
methods were used to check the correctness of the 
multimodal p.d.f.'s obtained. 

(a) CsPbC13 

The antiferroelectric perovskite CsPbCI a in its cubic 
high-temperature phase is one of the best investigated 
compounds with respect to disorder and anharmonic 
thermal motions (M~ller, 1959; Harada,  sakata ,  
Hoshino & Hirotsu, 1976; Hutton, Nelmes, Meyer & 
Eriksson, 197-9;-Sakata,  Harada,  Cooper & Rouse, 
1980; Ahtee, Kurki-Suonio, Vahvaselk/i, Hewat, 
Harada  & Hirotsu, 1980; Hutton & Nelmes, 1981). 
The data set used in our calculations was collected by 
Hutton et al. (1979) on the D9 four-circle diffractom- 
eter at the ILL at a temperature of 325 K, i.e. 5 K 
above the phase transition. The data were corrected for 
TDS (Nelmes, 1981) and for extinction using the model 
of Becker & Coppens (1974a,b). Our refinements 

* In some cases it may be necessary to start the refinement from 
plausible non-zero anharmonic parameters. 

focused on the determination of the actual p.d.f, of the 
C1 atom using the Gram-Char l ie r  as well as the 
Edgeworth formalism. 

In most of the investigations following on M¢ller's 
(1959) first study an (anharmonic) unimodal p.d.f, of 
C1 was preferred, rather than a multimodal one. The 
high-resolution studies by Hutton et  al. (1979) and 
Hutton & Nelmes (1981) ruled out completely the 
occurrence of a multimodal p.d.f. These authors refined 
an anharmonic model using a Fourier-invariant expan- 
sion; compared to a split model it gave a significantly 
better fit to the data. To estimate the model-inherent 
errors they performed test refinements on structure 
factors calculated from trial p.d.f.'s. 

Our refinement results are in agreement with this 
study apart from the fact that, compared with the 
Fourier-invariant technique, the Gram-Char l ier  expan- 
sion yields a better fit to the data for terms up to fourth 
order inclusive, while approximately the same quality 
of fit is obtained for terms up to sixth order inclusive. In 
contrast to the Fourier-invariant approximation the 
inclusion of Gram-Char l ie r  sixth-order terms does not 
improve the fit. The results are given in Table 1. The 
application of the Edgeworth formalism yields a worse 
fit to the data (up to fourth order: R w = 3.4%, 
goodness-of:fit S = 1.15 for Gram-Char l ier ;  R w = 

Table 1. S u r v e y  o f  da ta  sets  a n d  a g r e e m e n t  f a c t o r s  

CsPbCI 3 Ice Ih RbAg4I 5 

Pm3m P6Jmmc P4t32 
V(A 3) 176.09 128.21 1427.6 
Z 1 4 4 
Temperature (K) 325 60 297 
~neutro., (/D 0.656 0.7107 0.8436 
(sin 07;t)m ~ (A -1) 1.23 1.07 0.685 
Number of observations 209 288 434 

Ns (averaged) 
Atoms treated and site Cl (4/mmra) H(1) (6m2) Ag(1) 

symmetry H(2) (2/m) 
R w (%) (W = 1/O 2) 

split 3.6 1.2 anh: 1.2:1: 
har: 4.5 

non-split (Gram-Charlier) (I)t 3.4 H(1) 1.5 (III) 4.6 
(II) 3.3 H(2) 1.8 (IV) 4.0 

Number of refined 
parameters Np 

split 11 25 anh: 83 
hat': 31 
(III) 44 
(IV) 63 

non-split (Gram--Charlier) (I) 11 H(1) 14 
(II) 13 H(2) 25 

Goodness of fit, S* 
split 1.24 1.71 anh: 2.88 

har: 7.92 
non-split(Gram-Charlier) (I) 1.15 H(1) 2.06 (III) 8-30 

(II) 1.13 H(2) 2.57 (IV) 7.43 

* The goodness-of-fit is defined as 
S = [ ~hkl(WZlFhkt)2/(NR -- Ne)] 1/2. 

I" (I) Model up to fourth order. (II) Model up to sixth order. 
(III) Model A (see Fig. 6). (IV) Model B (see Fig. 6). 

$ anh: anharmonic; har: harmonic. 
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4.3%, S = 1.49 for Edgeworth) in agreement with the 
results of Hutton et al. (1979). 

First tests on the correctness of the p.d.f, by means 
of difference Fourier syntheses show no indication of 
any incorrectness of the obtained p.d.f. On a finer scale 
the power of the Gram-Charlier expansion to dis- 
criminate between unimodality and weak multi- 
moclality was examined by calculation of trial p.d.f.'s. It 
was found that the refined parameter set is far from the 
transition region between unimodality and disorder, 
allowing an unambiguous decision in favour of a 
unimodal p.d.f. 

The concerted action of all model parameters allows 
for a widely variable shape of the resulting p.d.f, and 
thus an essentially correct description of the true p.d.f. 
(indicated further by the obtained quality of fit). This is, 
although not conclusively, supported by a comparison 
of the model p.d.f.'s obtained by Gram-Charlier and 
Fourier-invariant expansions in a least-squares refine- 
ment. Notwithstanding the rather different approaches, 
the two p.d.f.'s are almost identical, as shown in Fig. 2. 
A more detailed comparison of Gram-Charlier and 
Fourier-invariant expansions is in preparation. 

(b) Ice Ih 

The main features of the crystal structure of ice Ih 
are well established by the neutron diffraction studies of 
Peterson & Levy (1957) and Chamberlain, Moore & 
Fletcher (1973). Its crystal structure seems to be of 
special interest in this context because of the observed 
or postulated occurrence of different multimodal 
atomic density distributions. The two independent H 
atoms, H(1) and H(2), show a distinct disorder along 
the O . . .  O directions. Apart from this well-established 
disorder a further splitting was proposed by (~hidam- 
baram (1961). In his 'bent-hydrogen-bond' model the 
H(1) atom is further split into three positions around 
the O . . .  O line yielding an H - O - - H  angle of approxi- 
mately 104.5 ° as observed in H20 vapour. This 
undoubtedly weak splitting may be detectable by 
careful inspection of the calculated p.d.f.'s. To study all 
these split situations in detail a neutron data set on ice 
Ih was collected at the four-circle diffractometer D9 of 
the ILL at a temperature of 60 K. The preliminary 
results are given elsewhere (Kuhs & Lehmann, 1981); 
in the following only the different split models and their 
approximations will be discussed. 

In order to test the ability to describe the pronounced 
H-atom splitting, test refinements using the Gram-  
Charlier as well as the Edgeworth expansion were 
performed. Only one H atom [either H(1) or H(2)] at a 
time was refined in this way, their mean position being 
fixed midway between two neighbouring O atoms. 
Compared with a conventional split model the quality 
of fit in the Gram-Charlier approximation is slightly 
worse. Refinements using the Edgeworth formalism 
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were not successful yieldfiag intolerably high R values 
and highly negative p.d.f.'s. Probably these negative 
p.d.f.'s are partly due to the fact that for strong 
anharmonicities the omitted higher-order contributions 
[eft equations (4) and (5)] are necessary to construct 
the correct p.d.f. Beyond that the bad fit (R w ~ 10%, 
S > 10) undoubtedly indicates an inadequacy of the 
Edgeworth model in reciprocal space. The refinement 
results are given in Table 1 and the bimodal p.d.f, of 
H(1) as obtained by the Gram-Charlier expansions is 
shown in Fig. 3. There are shallow negative regions at 
the tails of the Gram-Charlier p.d.f.'s as deep as 8.6% 
[H(1)] and 4.7% [H(2)] of the density at the 
corresponding mode position. Despite these minor 
shortcomings, one advantage of the Gram-Charlier 
model is important; the H probability density at the 
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(b) 
Fig. 2. (a) P.d.£ map of the CI atom in CsPbCI 3 at 325 K (Cs-C; 

plane). Gram-Charlier  expansion up to sixth order using 
least-squares estimated quasi-moments. Equidistant contours, 
zero contour omitted. (b) Corresponding difference p.d.f, map 
(P.d.f.G . . . .  Charlier -- P'd.f'Fourierinvariant). The two p.d.f.'s are scaled 
to the same probability at the centre. Equidistant contours of 1 
of the probability at the centre, zero contour omitted, negative 
contours dashed. 
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transition barrier is obtainable directly by inspection of 
the p.d.f. It should be mentioned in this context that for 
a data set on ice Ih measured at 223 K the quality of fit 
of the non-split model becomes slightly better com- 
pared to the harmonic split model ( R  w = 3.0%, 
goodness-of-fit S = 1.33 for non-split; R w = 3.1%, S = 
1.37 for split model; see Kuhs & Lehmann, 1983). 

The blmodal p.d.f, obtained was compared with a 
Fourier density map; in this clearly disordered centro- 
symmetric case the Fourier method should give very 
reliable results. The agreement is satisfactory, the 
mode/saddle ratio being 10.7 (1.8) for the Fourier 
synthesis and 8.7 (0.9) for the model p.d.f. The smaller 
ratio in the model p.d.f, is probably due to an 
overestimation of the density at the transition barrier 
(= saddle point) as confirmed by a difference Fourier 
synthesis of the non-split model. 

A confirmation of the correctness is the agreement of 
the intrasite mode-mode distances (non-split model) 
with the intersite mode-mode distances (split-atom 
model): 0.718 (7) A (intrasite) compared to 
0 .724(5)A (intersite) for H(1); and 0 .720(7)A 
compared to 0.728 (5)A for H(2), respectively. How- 
ever, the width of the p.d.f, of each (half-occupied) 
position is distinctly (maximum 20%) smaller for the 
split model compared to the non-split model. The 
agreement is satisfactory for the p.d.f.'s at 223 K. The 
discrepancy at 60 K is caused by a lack of flexibility of 
the non-split model for the case of high mode/mean 
ratios (see § 3), while at 223 K the model matches 
probably rather well with the true p.d.f. 

The question of further splitting of H(1) according to 
the 'bent-hydrogen-bond' model can now be investi- 
gated. The proposed splitting is very weak with 
mean-mode distances estimated to be --0.08 A. Trial 
p.d.f.'s using the Gram-Charlier expansion show 
clearly the flexibility of this model for describing a 
'bent-hydrogen-bond' situation; the result of such a trial 
p.d.f, is given in Fig. 4. However, the parameters 
obtained by least-squares refinements do not indicate a 
trimodal p.d.f. 

The 'bent-hydrogen-bond' model implies a 'flatness' 
of the p.d.f, near the mean position achieved by 
important higher even-order terms of the series expan- 
sions as well as properly directed modifications 
achieved by third-order terms. The fourth-order (and 
sixth-order) terms are, however, very weak and indicate 
in contrast to expectations a 'peakedness' of the p.d.f., 
while the third-order terms yield only small intimations 
of directional modifications of the p.d.f, and, more- 
over, these modifications are just in the opposite 
directions as predicted by the 'bent-hydrogen-bond' 
model. The p.d.f, obtained shows strong libration 
around the O - H  bond direction practically without 
any preference in orientation. The isotropy of libration 
is clearly visible in Fig. 5. The relative success of the 
'bent-hydrogen-bond' model in structure refinements is 
due to the resemblance of the true p.d.f, to a 
superposition of three harmonic p.d.f.'s (Kuhs & 
Lehmann, 1981). Based on the assumption of always 
smoothly varying true p.d.f.'s, a disorder corre- 
sponding to this model can be ruled out with a very 
high probability simply by inspection of the 'kurtosis' 
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Fig. 3. P.d.f. of H(I) in ice Ih at 60 K [section through mean 
positions of O and H(1) parallel to ac plane]. Equidistant 
contours, zero contour omitted, negative contours dashed. 

(a) (b) 
Fig. 4. (a) Trial p.d.f, of H(1) in ice Ih [section through mode 

position of H(1) parallel to ab plane] simulating a 'bent- 
hydrogen-bond' situation (mean-mode distance ~O.O8 A). Equi- 
distant contours, zero contours omitted. (b) Detail of (a) showing 
the central part of the trial p.d.f. Equidistant contours, intervals 
5O× finer than in (a). 
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map (i.e. a map showing only the fourth-order 
modifications to the harmonic density); the 'peaked- 
ness' found in this case combined with any type of 
disorder would result in a rather erratic and therefore 
unlikely true p.d.f. 

(C) RbAg4I s 

Finally, a data set on the crystal structure of 
RbAg4I s was used to test the case of strong anhar- 
monicities and distinct disorder. RbAg4I s is a cubic 
fast-ionic conductor with the highest known Ag + 
conductivity at room temperature. Accordingly, the 
atoms are smeared out along channels within a 
tetrahedral framework of I atoms. The Ag density 
distribution is not homogeneous along these con- 
duction pathways, but shows preferred sites (Geller, 
1967; Geller, Akridge & Wilber, 1979). A neutron 
diffraction study was performed to clarify the situation 
of these Ag positions. The neutron data were measured 
at the four-circle diffractometer D9 at the ILL and 
corrected for TDS (Merisalo & Kurittu, 1978). 
Detailed results of this study will be given in a 
forthcoming paper (Kuhs, Lehner & Heger, 1983). 
Only the Ag atoms will be discussed in some detail 
here. 

Structure refinements of a harmonic split model 
(including two split atoms) give a poor fit (see Table 1). 
Harmonic models containing more than two split 
atoms (as proposed by Geller, 1967; Geller et al., 
1979) could not be refined at all. The introduction of 

Fig. 5. Model p.d.f, of H(1) in ice Ih [section through mode position 
of H(1) parallel to ab plane]. Gram-Charlier expansion up to 
fourth order using least-squares estimated quasi-moments. 
Equidistant contours, zero contour omitted. 

anharmonic parameters up to the fifth order in the 
two-atom model improved the quality of the fit 
considerably (see Table 1). The resulting Fourier 
synthesis given in Fig. 6 shows clearly the conduction 
pathways with the preferred Ag sites. Starting from this 
Ag distribution two non-split models covering different 
parts of the structure were tested (indicated in Fig. 6). 
To deal with the numerous parameters resulting from 
the low symmetry and the high order of included terms, 
a parameter reduction as discussed in §4 was 
performed. Fully converged refinements were achieved 
for both models. However, the quality of fit was not 
completely satisfactory (see Table 1), indicating some 
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Fig. 6. Fourier synthesis of RbAg4I 5 at 298 K (section z = 0) based 
on the anharmonic split model. Equidistant contours at 
0.0021 x I0 -12 cm A -3, higher levels at 0.021 x I0 -~2 cm A -3, 
zero contour omitted, negative contours dashed. The regions 
covered by the non-split models are indicated (models .4 and B) 
as well as the barriers between the Ag positions. The mean 
positions of the non-split models are situated approximately at 
these barriers ((~) and (~)). 
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Fig. 7. P.d.f. of Ag as obtained from the non-split model A (section 
z = 0). Equidistant contours, zero contour marked, negative 
contours dashed. 
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serious difficulties in describing the true p.d.f.'s. The 
multimodal p.d.f.'s of the non-split models are shown in 
Figs. 7 (model A) and 8 (model B) respectively. While 
the p.d.f, of model A corresponds reasonably well to the 
Fourier density, the agreement for model B seems to be 
less favourable. Hardly tolerable negative regions as 
deep as 15.3% of the density at the mode position are 
found in the p.d.f, of model B (6.5% for model A). 

Fig. 8. P.d.f. of Ag as obtained from the non-split model B (section 
z = 0). Contours as in Fig. 7. 

Table 2. Mean barrier heights in RbAg4I 5 

.AH (in eV) obtained by 

Barrier Fourier 
(see Fig. 6) synthesis non-split p.d.f. 

A 0.037 0.039 
B 0.049 0.046 
C 0.063 Model not refined 

1A 
t I 

Fig. 9. P.d.f. of Ag(2) (section z = 0) as obtained from the 
anharmonic split model (note the multimodality). Equidistant 
contours, zero contour omitted, negative contours dashed. 

Apart from the quality of fit and the positive- 
definiteness of the p.d.f, a further criterion of the 
correctness of these models may be used, i.e. the total 
amount of Ag obtained by refining the Ag population 
parameters. The theoretical value is 16/unit cell, while 
the refined values are (standard deviations in paren- 
theses): 14.85 (0.24) for the harmonic split model, 
15.56 (0.18) for the anharmonic split model, 
14.88 (0.22) for model A, and 14.73 (0.21) for model 
B. These results indicate again the shortcomings of the 
harmonic split as well as both non-split models with 
respect to the anharmonic split model. 

An additional independent criterion for the correct- 
ness of these models is the agreement of the activation 
energy for ionic migration obtained from the atomic 
probability density with the measured activation 
energy. Interpreting the Fourier density as true prob- 
ability density and assuming classical Boltzmann 
statistics one can estimate the mean barrier heights 
from a conventional Fourier synthesis. The values 
obtained in this way compare well with those cal- 
culated from the non-split model p.d.f.'s, as shown in 
Table 2. The measured activation energies in RbAg4I 5 
range from 0-06 to 0.12 eV (1 eV = 1.6 x 10 -19 J) 
(Bentle, 1968; Owens & Argue, 1970; Nagao & 
Kaneda, 1975), which is in reasonable agreement with 
the limiting barrier C (see Fig. 6) obtained from the 
Fourier synthesis. One might argue that the esti- 
mations from structural data via p.d.f.'s or Fourier 
syntheses are slightly too low. The continuous Ag 
density probably limits the applicability of any isolated- 
atom approach and certainly prevents an easy inter- 
pretation of the resulting p.d.f.'s. 

Although the application of non-split models seems 
not to be the appropriate method, the statistical 
approach to multimodal atomic density distributions is 
still a powerful tool. In fact, even the anharmonic split 
models consist of multimodal p.d.f.'s. The complex Ag 
density can be described adequately by a superposition 
of a unimodal with such a bimodal p.d.f. (shown in Fig. 
9). These p.d.f.'s are not interpretable in an easy way 
and even considerably negative regions occur due to 
the superposition. The sole advantage of these multi- 
modal anharmonic split models is their success in the 
fitting procedure. A physical interpretation can be 
performed via an inspection of the resulting Fourier 
synthesis or by a careful superposition of the obtained 
p.d.f.'s. 

6. Concluding remarks 

A general method for describing multimodal atomic 
density distributions using well known series expan- 
sions of a Gaussian p.d.f, is discussed. Such series 
expansions are included in some structure refinement 
programs or can be inserted without any difficulties; no 
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modifications are necessary to switch from a simple 
anharmonic unimodal case to the multimodal case. 
Using high-quality diffraction data a refinement of 
high-order thermal parameters describing multimodal 
density distributions is feasible and a distinction 
between disorder (multimodality) and anharmonic 
motions (unimodality) is possible in many cases. It was 
found that the two series expansions tested are not 
equally successful. The Gram-Charlier expansion was 
clearly superior to the Edgeworth expansion and its 
superiority increases with the degree of disorder (cf. 
Zucker & Schulz, 1982). However, there may be 
situations in which the Edgeworth transform yields a 
better fit to the data. There is at the moment little to 
choose between the Gram-Charlier and the Fourier- 
invariant expansion with respect to the quality of fit. 
However, the Gram-Charlier approach has important 
computational advantages, mainly due to its generally 
valid (symmetry-independent) tensor expression. 

The Gram-Charlier expansion is successful 
especially in the case of weak disorder; nevertheless, 
rather pronounced multimodal densities may be 
described sufficiently well with a rather limited number 
of terms. In the extreme case of continuous density 
distributions, as in ionic conductors, the method may 
yield unsatisfactory results or fail completely. In these 
complex cases strong anharmonic terms are needed 
even in the split models. The only way to visualize these 
density distributions is by means of Fourier syntheses 
or by careful superpositions of the split-model p.d.f.'s. 
Such channel-like multi-peaked density distributions 
are reasonably reproduced in a Fourier map. The 
Fourier approach, however, often fails in borderline 
cases, while the p.d.f, approach is still suitable due to its 
ability to uncover tendencies towards either unimodal 
or multimodal p.d.f.'s; hence, both methods are to some 
extent complementary. The information drawn from an 
experimentally obtained p.d.f, has to be considered 
carefully in the light of obtainable resolution (limited by 
the measured range in reciprocal space) as well as the 
temperature dependency of precision at different levels 
of this p.d.f.; weak splittings (situated normally at the 
highest levels of a p.d.f.) are less and less precisely 
scanned as temperature increases. 

Neutron data are clearly preferable to X-ray data for 
investigations of disordered systems due to the lack of 
interference with electronic effects. In the X-ray case an 
analysis of atomic distributions has to be based on the 
p.d.f. (or a split-atom p.d.f, superposition); Fourier 
methods are not appropriate in general. 

In addition to the systems considered in this paper 
our method has been applied to a number of other 
compounds, describing their multimodal density distri- 
butions with great success [e.g. Cu6PSsCI and 
Cu6PSsBr (Kuhs & Heger, 1980)]. Further obvious 
applications are hydrogen-bond systems with H-atom 
splitting (e.g. in many ferroelectrics) or structures with 

questionable disorder [e.g. fl-quartz (Wright & Leh- 
mann, 1981)]. 

The author would like to acknowledge many helpful 
discussions with Drs U. H. Zucker and E. Perenthaler. 
Thanks are due to Drs M. S. Lehmann, G. Mclntyre 
and S. Mason for critical readings of the manuscript 
and to the referees for their constructive criticisms. 
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Abstract 

Absorption effects usually present the most serious 
source of systematic error in the determination of 
structure factors from single-crystal X-ray diffraction 
measurements if the crystal is not ground to a sphere or 
cylinder. A novel method is proposed for the correction 
of these effects for data collected on a diffractometer. 
The method works from the premise that the mani- 
festation of systematic errors due to absorption, unlike 
most other sources of systematic error, will not be 
evenly distributed through reciprocal space, but will be 
localized. A Fourier series in the polar angles of the 
incident and diffracted beam paths is used to model an 
absorption surface for the difference between the 
observed and calculated structure factors. Knowledge 
of crystal dimensions or linear absorption coefficient 
is not required, and the method does not necessitate 
the measurement of azimuthal scans or any extra data 
beyond the unique set. Moreover, application of the 
correction is not dependent upon the Laue symmetry of 
the crystal or the geometry of the diffractometer. The 
method is compared with other commonly used 
corrections and results are presented which demon- 
strate its potential. 

1. lntroduetion 

In the course of a single-crystal structure deter- 
mination, two methods are frequently used for the 
correction of absorption effects for crystals of arbitrary 
shape. 
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The numerical integration method of Busing & Levy 
(1957) requires that the faces of the crystal are indexed 
and their distance from a common point within the 
crystal is accurately determined. Precise measurement 
of the crystal becomes critical for those with a high 
linear absorption coefficient [see equation (2.4)]. The 
presence of an external absorber such as crystal mother 
liquor or any adhesive used in the mounting of the 
crystal, or lack of identifiable faces, will also produce 
serious problems for this approach. Furthermore, 
without a very powerful computer, considerable time is 
required for the evaluation of the integral by the 
Gaussian algorithm of Coppens, Leiserowitz & 
Rabinovich (1965) to a suitable accuracy. 

The semi-empirical correction method for 
diffractometer data of North, Phillips & Mathews 
(1968) requires the measurement of azimuths ~, for a 
single reflection by rotating the crystal about the 
goniometer-head axis tp (Fig. 1). The resultant trans- 
mission curve is normalized and hence provides only a 
relative correction. Though widely used in small- 
molecule structure determinations, the method has 
three serious limitations. An unfavourable crystal 
mounting for data collection on an Enraf-Nonius 
CAD4 diffractometer (which utilizes tc rather than 
Eulerian cradle geometry), can render it impossible to 
record a complete azimuthal scan for any reflection. 
This problem can be averted if the crystal is mounted 
so that a reciprocal-lattice axis is approximately 
coincident with the tp axis. Not only is it inconvenient to 
remount a crystal where its morphology did not allow a 
satisfactory initial alignment to be made, but this 
restraint negates the advantages of automatic orien- 
tation systems present on modern diffractometers. 
Secondly, an observed change in the intensity of a 
reflection with azimuth ~ may be due to anisotropic 
primary extinction (Seiler & Dunitz, 1978) or aniso- 
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